Photovoltaic support tie rod
6 FAQs about [Photovoltaic support tie rod]
What are the characteristics of a cable-supported photovoltaic system?
Long span, light weight, strong load capacity, and adaptability to complex terrains. The nonlinear stiffness of the new cable-supported photovoltaic system is revealed. The failure mode of the new structure is discussed in detail. Dynamic characteristics and bearing capacity of the new structure are investigated.
What is a new cable-supported photovoltaic system?
A new cable-supported photovoltaic system is proposed. Long span, light weight, strong load capacity, and adaptability to complex terrains. The nonlinear stiffness of the new cable-supported photovoltaic system is revealed. The failure mode of the new structure is discussed in detail.
Do flexible PV support structures deflection more sensitive to fluctuating wind loads?
This suggests that the deflection of the flexible PV support structure is more sensitive to fluctuating wind loads compared to the axial force. Considering the safety of flexible PV support structures, it is reasonable to use the displacement wind-vibration coefficient rather than the load wind-vibration coefficient.
Do flexible PV support structures have resonant frequencies?
Modal analysis reveals that the flexible PV support structures do not experience resonant frequencies that could amplify oscillations. The analysis also provides insights into the mode shapes of these structures. An analysis of the wind-induced vibration responses of the flexible PV support structures was conducted.
What is the inflection point of a cable-supported PV system?
When the upward vertical displacement is less than 0.0639 m, the force first counteracts the self-weight of the cables and PV modules. Therefore, there is an inflection point at 0.0639 m. For the new cable-supported PV system, the lateral stiffness is much higher than the vertical stiffness.
Which wind-vibration coefficient should be used for flexible PV support structures?
Considering the safety of flexible PV support structures, it is reasonable to use the displacement wind-vibration coefficient rather than the load wind-vibration coefficient. For the flexible PV arrays with wind-resistant cables discussed in this study, a recommended range for the wind-vibration coefficient is 1.5 to 2.52.
Related Contents
- The role of the photovoltaic support rod
- Photovoltaic flexible support tensile anchor rod
- How to use the photovoltaic support tracking push rod
- How heavy is the steel material of photovoltaic support
- Photovoltaic support cast-in-place pile supplier
- Photovoltaic support anti-sinking construction
- Photovoltaic support equipment research report
- Flexible support installation for photovoltaic power station
- Photovoltaic welding support construction team
- Photovoltaic support assembly project overview
- Photovoltaic support pipe
- Qiannan Photovoltaic Support System Company